Задачка по шахматной доске

Шахматная игра была придумана в Индии, и когда индусский царь Шерам познакомился с нею, он был восхищен ее остроумием и разнообразием возможных в ней положений. Узнав, что она изобретена одним из его подданных, царь приказал его позвать, чтобы лично наградить за удачную выдумку.

Изобретатель, его звали Сета, явился к трону повели­теля. Это был скромно одетый ученый, получавший сред­ства к жизни от своих учеников.

Сисса бен Дахир (Сасса бен Дахир) – мифический индийский мудрец, которому приписывается изобретение шахмат. 

– Я желаю достойно вознаградить тебя, Сета, за прекрасную игру, которую ты придумал, – сказал царь.

Мудрец поклонился.

– Я достаточно богат, чтобы исполнить самое смелое твое пожелание, – продолжал царь.– Назови награду, которая тебя удовлетворит, и ты получишь ее.

Сета молчал.

– Не робей, – ободрил его царь. – Выскажи свое желание. Я не пожалею ничего, чтобы исполнить его.

– Велика доброта твоя, повелитель. Но дай срок обдумать ответ. Завтра, по зрелом размышлении, я сообщу тебе мою просьбу.

Когда на другой день Сета снова явился к ступеням трона, он удивил царя беспримерной скромностью своей просьбы.

– Повелитель, – сказал Сета,– прикажи выдать мне за первую клетку шахматной доски одно пшеничное зерно.

– Простое пшеничное зерно? – изумился царь.

– Да, повелитель. За вторую клетку прикажи выдать 2 зерна, за третью 4, за четвертую – 8, за пятую – 16, за шестую – 32…

–Довольно, – с раздражением прервал его царь.– Ты получишь свои зерна за все 64 клетки доски, согласно твоему желанию: за каждую вдвое больше против предыдущей. Но знай, что просьба твоя недостойна моей щедрости. Прося такую ничтожную награду, ты непочтительно пренебрегаешь моею милостью. Поистине, как учитель, ты мог бы показать лучший пример уважения к доброте своего государя. Ступай. Слуги мои вынесут тебе твой мешок с пшеницей.

Сета улыбнулся, покинул залу и стал дожидаться у ворот дворца.

За обедом царь вспомнил об изобретателе шахмат и послал узнать, унес ли уже безрассудный Сета свою жалкую награду.

– Повелитель, – был ответ, – приказание твое исполняется. Придворные математики исчисляют число следуемых зерен.

Царь нахмурился. Он не привык, чтобы повеления его исполнялись так медлительно.

Вечером, отходя ко сну, царь еще раз осведомился, давно ли Сета со своим мешком пшеницы покинул ограду дворца.

– Повелитель, – ответили ему,– математики твои трудятся без устали и надеются еще до рассвета закончить подсчет.

– Почему медлят с этим делом? – гневно воскликнул царь. – Завтра, прежде чем я проснусь, все до последнего зерна должно быть выдано Сете. Я дважды не приказываю.

Утром царю доложили, что старшина придворных математиков просит выслушать важное донесение. Царь приказал ввести его.

– Прежде чем скажешь о твоем деле, – объявил Шерам,– я желаю услышать, выдана ли, наконец, Сете та ничтожная награда, которую он себе назначил.

– Ради этого я и осмелился явиться перед тобой в столь ранний час,– ответил старик.– Мы добросовестно исчислили все количество зерен, которое желает получить Сета. Число это так велико…

– Как бы велико оно ни было, – надменно перебил царь, житницы мои не оскудеют. Награда обещана и должна быть выдана…

– Не в твоей власти, повелитель, исполнять подобные желания. Во всех амбарах твоих нет такого числа зерен, какое потребовал Сета. Нет его и в житницах целого царства. Не найдется такого числа зерен и на всем пространстве Земли. И если желаешь непременно выдать обещанную награду, то прикажи превратить земные царства в пахотные поля, прикажи осушить моря и океаны, прикажи растопить льды и снега, покрывающие далекие северные пустыни. Пусть все пространство их сплошь будет засеяно пшеницей. И все то, что родится на этих полях, прикажи отдать Сете. Тогда он получит свою награду. С изумлением внимал царь словам старца.

– Назови же мне это чудовищное число, – сказал он в раздумье.

Восемнадцать квинтиллионов четыреста сорок шесть квадриллионов семьсот сорок четыре триллиона семьдесят три биллиона семьсот девять миллионов пятьсот пятьдесят одна тысяча шестьсот пятнадцать, о повелитель!

Тогда повелитель понял, насколько мудр и хитер был изобретатель шахмат Сета. А он просто знал законы математики и как работает экспоненциальный рост.

 

Как получилась такая большая сумма

 

На всей шахматной доске 64 клеточки. Общее количество зерен получается 2 в 64 степени − 1.

Или 18 446 744 073 709 551 616 зёрен, их общая масса составит 461 168 602 000 тонн. Для того, чтобы вместить такое количество зерна потребуется амбар с размерами 10х10х15 км…

Начав с единицы, нужно сложить числа: 1, 2, 4, 8 и т. д. Иначе эту сумму можно записать так:

1 + 2 + 4 + 8 + . . . = 20 + 21 + 22 + 23 + . . . + 263.

Последнее слагаемое показывает, сколько причиталось изобретателю за 64-ю клетку доски.

Упростим полученную сумму исходя из следующих соображений. Обозначим

S = 20 + 21 + 22 + 23 + . . . + 263,

тогда

2S = 2 · (20 + 21 + 22 + 23 + . . . + 263) = 21 + 22 + 23 + 24 + . . . + 264

и

S = 2S – S = (21 + 22 + 23 + 24 + . . . + 264) – (20 + 21 + 22 + 23 + . . . + 263) =

   = 264 – 20 = 264 – 1.

Необходимое число зёрен

S = 264 – 1.

Значит, подсчет сводится лишь к перемножению 64 двоек! (А уж единицу потом вычесть сумеем).

S = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·

          · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·

          · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·

          · 2 · 2 · 2 · 2 – 1.

Для облегчения выкладок разделим 64 множителя на 6 групп по 10 двоек в каждой и одну последнюю группу из 4 двоек. Произведение 10 двоек, как легко убедиться, равно 1 024, а 4 двоек – 16. Значит, искомый результат равен

S = 1 024 · 1 024 · 1 024 · 1 024 · 1 024 · 1 024 · 16 – 1.

Так как

1024 · 1024 =  1 048 576,

то

S = 1 048 576 · 1 048 576 · 1 048 576 · 16 – 1.

Проявим терпение и аккуратность в подсчётах и получим:

S = 18 446 744 073 709 551 615.

Это количество зерна примерно в 1800 раз превышает мировой урожай пшеницы за год (в 2008 – 2009 аграрном году урожай составил 686 млн тонн), то есть превышает весь урожай пшеницы, собранный за всю историю человечества.

Экспоненциальный рост или магия сложного процента

 

Стремительное возрастание значений величины, подобное тому, которое мы наблюдали, в математике называется экспоненциальным ростом.

Экспоненциальный рост – возрастание величины, когда скорость роста пропорциональна значению самой величины. Говорят, что такой рост подчиняется экспоненциальному закону. В случае дискретной области определения с равными интервалами его еще называют геометрическим ростом (значения функции образуют геометрическую прогрессию).

Для любой экспоненциально растущей величины чем большее значение она принимает, тем быстрее растет. Также это означает, что величина зависимой переменной и скорость ее роста прямо пропорциональны.

Примером экспоненциального роста может быть рост числа бактерий в колонии до наступления ограничения ресурсов.

Экспоненциальный рост почти не заметен в самом начале, но на дистанции… На дистанции он способен создавать умопомрачительные состояния.

Как это делать подробнее узнайте на курсе “Секреты Богатства 5.0”, где вы изучите секреты, применение которых помогают быстрее создать экспоненциальный рост вашего капитала чтобы навсегда покончить с причинами всех ваших финансовых проблем. Подробнее по ссылке  – mrscrooge.ru/course